Warsaw University of Technology

COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course		4606-ES-00000BH-0016		Name of the course		Polish		Identyfikacja systemów w inżynierii lotniczej		
		4606-23-00000	5H-0010	INdi	he of the course	English		System identification in aerospace engineering		
Type of the course		specialized								
Course coordinator		Piotr Lichota, Pł	nD, DSc							
Implementing unit		The Faculty of Power and Aeronautical Engineering		Scie	ntific discipline / disciplines*	Mechanical Engineering/ Automation, electronic, electrical engineering and space technologies				
Level of education		PhD			Semester	winter				
Language of the cour	se	english								
Type of assessment	:	Credit with	a grade	N	umber of hours in a semester	Э	80	ECTS credits	2	
Minimum number of participants		10		Ν	Naximum number of participants	2	20	Available for studen (BSc, MSc)	ts <u>Yes</u> /No	
Type of classes		s Lecture			Auditory classes	s Proje	ct classes	Laboratory	Seminar	
Number of hours	i	in a week	1					1		
		a semester	15					15		

* does not apply to the Researcher's Workshop

1. Prerequisites

Basic knowledge of flight mechanics, mathematical analysis, automation and control.

2. Course objectives

The course aims to familiarize the course participants with system identification methods used in aeronautical engineering. After completing the study, the participant can plan identification experiments and define the requirements for measurement data adequate for aircraft motion modeling. The course participant can choose the appropriate estimation method, carry out the system identification for typical flight dynamics problems and validate the results.

3. Course content (separate for each type of classes)

Lecture

Experiment planning, measurement and data compatibility check, equation error methods, output error methods, filter error methods, identification from frequency responses, artificial neural networks, online identification, dynamically unstable aircraft identification, mathematical models, model validation.

Laboratory

Basic systems identification methods, equation error method, maximum likelihood principle, designing system identification experiments.

4. Learnir	ng outcomes		
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*
	Knowledge		
K01	The course participant has basic knowledge of system identification and flight mechanics for identifying mathematical models describing aircraft movement.	SD_W2, SD_W3	Written test
K02	The course participant knows the types of signals used to identify models that are describing the aircraft motion and can determine their capabilities and limitations.	SD_W2, SD_W3	Written test, report evaluation

Warsaw University of Technology

КОЗ	The course participant knows the basic assumptions of carrying out measurements, mathematical models of the measurement sensors used, and data validation methods used to identify mathematical models describing the aircraft motion.	SD_W2, SD_W3	Written test
K04	The course participant knows the basic estimation methods used to identify mathematical models describing the aircraft motion and their applicability range.	SD_W2	Written test, report evaluation
K05	The course participant knows modifications of the primary identification methods used to describe the aircraft motion for near real-time estimation and dynamically unstable aircraft.	SD_W2, SD_W3	Written test
K06	The course participant knows how to determine the form and structure of the mathematical model describing the aircraft's motion under test.	SD_W2	Written test, report evaluation
K07	Uczestnik kursu ma wiedzę w zakresie określania formy i struktury modelu matematycznego opisującego ruch badanego statku powietrznego.	SD_W2, SD_W3	Written test, report evaluation
	Skills		
S01	The course participant can plan the identification experiment by themselves.	SD_U1	Written test, report evaluation
S02	The course participant can select the appropriate estimation method for the identified aircraft at given flight conditions.	SD_U1	Written test
S03	The course participant can choose a method for the identification task and carry out the parametric or non-parametric identification process for simple problems.	SD_U1, SD_U2, SD_U4	Written test, report evaluation
S04	The course participant can determine the structure of the mathematical model of the identified aircraft and update it.	SD_U1, SD_U2	Report evaluation
S05	The course participant can use validation methods to analyze the result.	SD_U2	Written test, report evaluation
	Social competences		
SC01	The course participant formulates priorities in the investigated problems and independently works in searching for information and achieving the assumed goal.	SD_K4	Report evaluation
SC02	The course participant is aware of their knowledge and skills and understands the need for further professional improvement and personal development.	SD_K1, SD_K2	Report evaluation

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

During the semester, one test is planned (max. 20 points), laboratory work is assessed (max. 4 points in total), and the presence and activity in the laboratory are monitored (max. 1 point). The student receives a final grade based on the number of points obtained.

Primary literature:

[1] Jategaonkar, R. V.: "Flight Vehicle System Identification: A Time Domain Methodology," Progess in Astronautics and Aeronautics, AIAA, Reston, VA, 2006.

[2] Klein, V., Morelli, E. A.: "Aircraft System Identification: Theory and Practice," AIAA Education Series, AIAA, Reston, VA , 2006.

[3] Tischler, M.B., Remple, R. K., "Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples", AIAA Education Series, AIAA, Reston, VA, 2006.

Secondary Literature:

Goodwin, G. C., Payne, R. L. :"Dynamic system identification Experiment design and data analysis," Academic
Press, New York, 1977

[3] Ljung L.: "System Identification: Theory for the User", Prentice Hall, Upper Saddle River, 1998

[4] Soedersrtoem T., Stoica P.: Identyfikacja systemów, PWN, Warsaw, 1997.

No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	30
2	Hours of consultations with the academic teacher, exams, tests, etc.	5
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	20
4	Amount of time devoted to the preparation for exams, test, assessments	5
	Total number of hours	60
	ECTS credits	2